CEBA talks 2020-2023
Invited talks Past talks

The Vector Error Correction Index Model: Representation and Statistical Inference

Authors: Gianluca Cubadda (Universit`a di Roma ”Tor Vergata”), Marco Mazzali (Universit`a di Roma ”Tor Vergata”).

Abstract: This paper extends the multivariate index autoregressive model by Reinsel (1983) to the case of cointegrated time series of order (1, 1). In this new modelling, namely the Vector Error-Correction Index Model (VECIM), the first differences of series are driven by some linear combinations of the variables, namely the indexes. When the indexes are significantly fewer than the variables, the VECIM achieves a substantial dimension reduction w.r.t. the Vector Error Correction Model. We show that the VECIM allows to decompose the reduced form errors into sets of common and uncommon shocks, and that the former can be further decomposed into permanent and transitory shocks. Moreover, we offer a switching algorithm for optimal estimation of the VECIM. Finally, we document the practical value of the proposed approach by both simulations and an empirical application, where we search for the shocks that drive the aggregate fluctuations at different frequency bands in the US.

Presentations slides